Complete Parsimony Haplotype Inference Problem and Algorithms

Gerold Jäger

Christian-Albrechts-University Kiel (Germany)

joint work with Sharlee Climer, Weixiong Zhang Washington University St. Louis (United States)

September 8, 2009

Overview

- **1** [Haplotype Inference by Pure Parsimony \(HIPP\)](#page-3-0)
	- **•** [Biological Background](#page-3-0)
	- **[Mathematical Formulation](#page-4-0)**
- **2** [New Problem: Complete Haplotype Inference by Pure](#page-7-0) [Parsimony \(CHIPP\)](#page-7-0)
	- **•** [Biological Motivation](#page-7-0)
	- **[Mathematical Formulation](#page-8-0)**
- **3** [CHIPP Algorithms](#page-9-0)
	- [Integer Programming Algorithm](#page-9-0)
	- [Branch-and-Bound Algorithm](#page-12-0)

Overview

- [Concept](#page-14-0)
- **[Backbone Technique](#page-15-0)**
- [Equal Column Technique](#page-19-0)
- [Decomposability Technique](#page-21-0)

Haplotype Inference by Pure Parsimony (HIPP)

Biological Background

Haplotypes and genotypes

- Haplotypes: set of nucleotides in physical proximity on a chromosome strand.
- Genotypes: conflations of haplotype pairs.

HIPP

- Identifying individual haplotypes in a laboratory setting: feasible only for small studies.
- Observation: Number of unique haplotypes in a given population is small.
- \hookrightarrow Minimize number of unique haplotypes.
- \hookrightarrow Haplotype Inference by Pure Parsimony (HIPP)

Haplotype Inference by Pure Parsimony (HIPP)

Mathematical Formulation

Haplotypes and genotypes

- Let *m* ∈ N.
- Haplotype: $h \in \{0, 1\}^m$
- Genotype: *g* ∈ {0, 1, 2} *m*
- Explanation of genotypes by haplotypes:
	- h, h' explain g , if for each $i = 1, 2, \ldots, m$:

1 $g_i = 0 \Rightarrow h_i = h'_i = 0$ **2** $g_i = 1 \implies h_i = h'_i = 1$

3 $g_i = 2 \implies h_i = 0, h'_i = 1 \text{ or } h_i = 1, h'_i = 0$

Example: Haplotypes $h = (1, 0, 1, 1)$ and $h' = (0, 0, 1, 0)$ explain genotype $(2, 0, 1, 2)$.

Haplotype Inference by Pure Parsimony (HIPP)

Mathematical Formulation

HIPP

- Input: Set of genotypes $G = \{q_1, q_2, \ldots, q_n\}$ with $g_i \in \{0, 1, 2\}^m$.
- \bullet Output: Set of haplotypes $H = \{h_1, h_2, \ldots, h_p\}$ with $h_j \in \{0, 1\}^m$, where

- **¹** Each genotype in *G* can be explained by two haplotypes in *H*.
- **2** $|H| = p$ is minimal.
- **o** Remark: HIPP is NP-hard.

Haplotype Inference by Pure Parsimony (HIPP)

Mathematical Formulation

Example

- **o** Input: $g_1 = (2, 1), g_2 = (2, 2).$
- Solution: $h_1 = (0, 1), h_2 = (0, 0), h_3 = (1, 1)$, because
	- **1** q_1 can be explained by h_1 , h_3 .
	- **2** q_2 can be explained by h_2 , h_3 .
	- **3** No set of haplotypes exists with this condition and cardinality 1 or 2.

[Complete Parsimony Haplotype Inference Problem and Algorithms](#page-0-0) New Problem: Complete Haplotype Inference by Pure Parsimony (CHIPP) Biological Motivation

Disadvantage of HIPP

- HIPP may have multiple optimal solutions.
- Arbitrary algorithm returns arbitrary optimal solution.
- Found optimal solution may be not the biological true solution.

Idea

- Find all optimal HIPP solutions.
- **Purpose:** Increase probability of finding the biologically true solution.
- \hookrightarrow Complete Haplotype Inference by Pure Parsimony (CHIPP)
- \hookrightarrow Biological Study: [Climer, J., Templeton, Zhang; Bioinformatics; 2009]

New Problem: Complete Haplotype Inference by Pure Parsimony (CHIPP)

Mathematical Formulation

CHIPP

- **•** Input: Set of genotypes $G = \{g_1, g_2, \ldots, g_n\}$ with $g_i \in \{0,1\}^m$
- Output: Find all HIPP solutions.

Example

- **•** Input: $q_1 = (2, 2)$.
- Solution 1: $h_1 = (0, 0), h_2 = (1, 1)$.
- • Solution 2: $h_3 = (0, 1), h_4 = (1, 0)$.

CHIPP Algorithms

Integer Programming Algorithm

Integer Programming (IP) Model for HIPP

- [Gusfield; 2003]
- Consider all haplotypes h_1, h_2, \ldots, h_r explaining at least one genotype.
- \bullet Define for $i = 1, 2, \ldots, r$:

 $x_i = \begin{cases} 1, & \text{if haplotype } h_i \text{ appears in the HIPP solution} \\ 0, & \text{otherwise} \end{cases}$ 0, otherwise

• Structure of IP model

 $min\sum_{i=1}^{r}$ *i*=1 *xⁱ* subject to $x_i \in \{0, 1\}$ for $i = 1, ..., r$, further constraints

CHIPP Algorithms

Integer Programming Algorithm

IP Algorithm for CHIPP

1 Solve HIPP using the IP model.

Let i_1, \ldots, i_p be the indices of these haplotypes.

2 Add the following inequality to the IP model:

$$
\sum_{s=1}^p x_{i_s} \leq p-1
$$

CHIPP Algorithms

Integer Programming Algorithm

- **⁴** Case 1: The new IP has an objective value larger than *p*.
- \hookrightarrow No new optimal solution exists.
- **⁵** Case 2: The new IP has an objective value equal to *p*.
- \hookrightarrow Another optimal solution has been found.
- **6** Repeat this process, until all optimal solutions have been found.

CHIPP Algorithms

Branch-and-Bound Algorithm

Branch-and-Bound (BnB) Algorithm for HIPP

• [Wang, Xu; 2003]

- The algorithm starts with a heuristic solution leading to the initial upper bound for the BnB search.
- The search implicitly considers all possible explaining haplotype pairs for each genotype.
- The best solution found is the optimal solution to be returned.
- • If during the search the node cost is equal to or exceeds the upper bound, move on to the next branch.

CHIPP Algorithms

Branch-and-Bound Algorithm

BnB Algorithm for CHIPP

- Pruning is applied only when the node cost strictly exceeds the upper bound.
- This allows to explore a branch that may lead to another optimal solution.

Optimization Techniques

Concept

Concept

- o Idea: Transform instance to a smaller and easier equivalent one.
- Advantage: New instance easier to solve.
- Disadvantage: Transformation costs extra time.
- Expectation: For difficult instances extra time is much smaller than saved time.
- \hookrightarrow Fixed Parameter Tractability [Niedermeier; 2006]

Optimization Techniques

Backbone Technique

Backbones

- Backbone haplotypes: Haplotypes appearing in each optimal HIPP solution.
- Backbone genotypes: Genotypes that can be explained by two backbone haplotypes.
- o Idea: Backbone genotypes can be omitted for HIPP/CHIPP. Reason: They can be explained by haplotypes of any optimal solution.
- \hookrightarrow Compute backbone haplotypes.
- \hookrightarrow With backbone haplotypes compute backbone genotypes (easy).

Optimization Techniques

Backbone Technique

Computation of trivial backbone haplotypes

- A genotype with no 2 leads to one backbone haplotype. Example: $g = (1, 0, 1) \Rightarrow h = (1, 0, 1)$.
- A genotype with one 2 leads to two backbone haplotypes. Example: $g = (1, 0, 2) \Rightarrow h = (1, 0, 0)$ and $h' = (1, 0, 1)$.
- This are trivial backbone haplotypes.

Optimization Techniques

Backbone Technique

Computation of non-trivial backbone haplotypes

- Idea: When a backbone haplotype is omitted, no optimal solution to HIPP can be found any more.
- This haplotype must be contained in the optimal solution.

Optimization Techniques

Backbone Technique

Example

- **•** Input: $q_1 = (1, 0, 2, 2), q_2 = (2, 2, 1, 0), q_3 = (2, 2, 1, 2).$
- Solution 1: $h_1 = (1, 0, 1, 0), h_2 = (1, 0, 0, 1),$ $h_3 = (0, 1, 1, 0), h_4 = (0, 1, 1, 1),$ because
	- **1** g_1 can be explained by h_1 , h_2 .
	- **2** q_2 can be explained by h_1, h_3 .
	- **3** q_3 can be explained by h_1 , h_4 .
	- **4** No set of haplotypes exists with this condition and cardinality 1, 2 or 3.
- \bullet Question: Is $h_1 = (1, 0, 1, 0)$ a backbone haplotype?
- **Answer: Yes, because**

a solution without $h_1 = (1, 0, 1, 0)$ contains $h_5 = (1, 0, 0, 0), h_6 = (1, 0, 1, 1).$ $h_7 = (0, 0, 1, 0), h_8 = (1, 1, 1, 0)$ and another 5-th haplotype.

Optimization Techniques

Equal Column Technique

Example

- Input 1: $g_1 = (2)$. **Solution:** $h_1 = (0), h_2 = (1)$.
- • Input 2: $g_2 = (2, 2)$. Solution 1: $h_3 = (0, 0), h_4 = (1, 1).$ Solution 2: $h_5 = (0, 1), h_6 = (1, 0)$.

Optimization Techniques

Equal Column Technique

Equal Column Technique

- Copy column 1 of the solution of input 1 to column 2.
- \hookrightarrow Solution 1 of input 2.
- \hookrightarrow Equal column technique for HIPP [Wang, Xu; 2003].
	- **But:** original equal column technique does not work directly for CHIPP because

solution 2 of input 2 is missed by this method.

- \leftrightarrow Idea: For an equal column enumerate all possible combinations of 0 and 1 with the restriction that
	- each resulting haplotype explains at least one genotype.

Optimization Techniques

Decomposability Technique

Decomposability Algorithm

Two genotypes g and g' are non-overlapping, if $i \in \{1, 2, \ldots, m\}$ exists with:

•
$$
g_i = 0
$$
, $g'_i = 1$ or $g_i = 1$, $g'_i = 0$.

- Observation: Two non-overlapping genotypes do not share any explaining haplotype.
- → Idea: Compose CHIPP solutions of sub-classes whose genotypes do not overlap.

Optimization Techniques

Decomposability Technique

Example

o Input 1: $g_1 = (0, 2, 2)$. Solution 1: $h_1 = (0, 0, 0), h_2 = (0, 1, 1).$ Solution 2: $h_3 = (0, 0, 1), h_4 = (0, 1, 0).$

\n- Input 2:
$$
g_2 = (1, 2, 2)
$$
.
\n- Solution 1: $h_5 = (1, 0, 0), h_6 = (1, 1, 1)$.
\n- Solution 2: $h_7 = (1, 0, 1), h_8 = (1, 1, 0)$.
\n

\n- Input 3:
$$
g_1 = (0, 2, 2), g_2 = (1, 2, 2)
$$
. Solution 1: h_1, h_2, h_5, h_6 . Solution 2: h_1, h_2, h_7, h_8 . Solution 3: h_3, h_4, h_5, h_6 . Solution 4: h_3, h_4, h_7, h_8 .
\n

Experimental Results

Easy Instances

- Optimized slightly worse than baseline algorithms.
- \hookrightarrow Typical example: IP-Bas.: 1 sec. IP-Opt.: 1.68 sec.

Difficult Instances

- Optimized significantly superior to baseline algorithms.
- \hookrightarrow Typical example: BnB-Bas.: > 6 h. BnB-Opt.: 275.69 sec.

Optimized Versions

IP better performance than BnB.

Optimization Techniques

• Strongly depends on structure of instances, e.g., backbone technique effective for instances with many backbones.

Experimental Results

Thanks for your attention!