Complete Parsimony Haplotype Inference Problem and Algorithms

Gerold Jäger

Christian-Albrechts-University Kiel (Germany)

joint work with Sharlee Climer, Weixiong Zhang Washington University St. Louis (United States)

September 8, 2009

Overview

- Haplotype Inference by Pure Parsimony (HIPP)
 - Biological Background
 - Mathematical Formulation
- 2 New Problem: Complete Haplotype Inference by Pure Parsimony (CHIPP)
 - Biological Motivation
 - Mathematical Formulation
- 3 CHIPP Algorithms
 - Integer Programming Algorithm
 - Branch-and-Bound Algorithm

Overview

- Concept
- Backbone Technique
- Equal Column Technique
- Decomposability Technique

Haplotype Inference by Pure Parsimony (HIPP)

Biological Background

Haplotypes and genotypes

- Haplotypes: set of nucleotides in physical proximity on a chromosome strand.
- Genotypes: conflations of haplotype pairs.

HIPP

- Identifying individual haplotypes in a laboratory setting: feasible only for small studies.
- Observation: Number of unique haplotypes in a given population is small.
- → Minimize number of unique haplotypes.
- → Haplotype Inference by Pure Parsimony (HIPP)

Haplotype Inference by Pure Parsimony (HIPP)

Mathematical Formulation

Haplotypes and genotypes

- Let $m \in \mathbb{N}$.
- Haplotype: *h* ∈ {0, 1}^{*m*}
- Genotype: $g \in \{0, 1, 2\}^m$
- Explanation of genotypes by haplotypes:

h, *h*' explain *g*, if for each i = 1, 2, ..., m:

 $\begin{array}{ccc} \bullet & g_i = 0 \Rightarrow & h_i = h'_i = 0 \\ \bullet & g_i = 1 \Rightarrow & h_i = h'_i = 1 \end{array}$

3
$$g_i = 2 \implies h_i = 0, h'_i = 1 \text{ or } h_i = 1, h'_i = 0$$

Example: Haplotypes h = (1, 0, 1, 1) and h' = (0, 0, 1, 0) explain genotype (2, 0, 1, 2).

Haplotype Inference by Pure Parsimony (HIPP)

Mathematical Formulation

HIPP

- Input: Set of genotypes $G = \{g_1, g_2, ..., g_n\}$ with $g_i \in \{0, 1, 2\}^m$.
- Output: Set of haplotypes $H = \{h_1, h_2, \dots, h_p\}$ with $h_j \in \{0, 1\}^m$, where

- Each genotype in G can be explained by two haplotypes in H.
- |H| = p is minimal.
- Remark: HIPP is NP-hard.

Complete Parsimony Haplotype Inference Problem and Algorithms Haplotype Inference by Pure Parsimony (HIPP)

Mathematical Formulation

Example

- Input: $g_1 = (2, 1), g_2 = (2, 2).$
- Solution: $h_1 = (0, 1), h_2 = (0, 0), h_3 = (1, 1)$, because
 - **1** g_1 can be explained by h_1, h_3 .
 - 2 g_2 can be explained by h_2, h_3 .
 - No set of haplotypes exists with this condition and cardinality 1 or 2.

Complete Parsimony Haplotype Inference Problem and Algorithms New Problem: Complete Haplotype Inference by Pure Parsimony (CHIPP)

Biological Motivation

Disadvantage of HIPP

- HIPP may have multiple optimal solutions.
- Arbitrary algorithm returns arbitrary optimal solution.
- Found optimal solution may be not the biological true solution.

Idea

- Find all optimal HIPP solutions.
- Purpose: Increase probability of finding the biologically true solution.
- ← Complete Haplotype Inference by Pure Parsimony (CHIPP)
- → Biological Study:
 [Climer, J., Templeton, Zhang; Bioinformatics; 2009]

Complete Parsimony Haplotype Inference Problem and Algorithms New Problem: Complete Haplotype Inference by Pure Parsimony (CHIPP)

Mathematical Formulation

CHIPP

- Input: Set of genotypes $G = \{g_1, g_2, \dots, g_n\}$ with $g_i \in \{0, 1\}^m$
- Output: Find all HIPP solutions.

Example

- Input: $g_1 = (2, 2)$.
- Solution 1: $h_1 = (0, 0), h_2 = (1, 1).$
- Solution 2: $h_3 = (0, 1), h_4 = (1, 0).$

CHIPP Algorithms

Integer Programming Algorithm

Integer Programming (IP) Model for HIPP

- [Gusfield; 2003]
- Consider all haplotypes h₁, h₂, ..., h_r explaining at least one genotype.
- Define for *i* = 1, 2, ..., *r*:

 $x_i = \begin{cases} 1, & \text{if haplotype } h_i \text{ appears in the HIPP solution} \\ 0, & \text{otherwise} \end{cases}$

Structure of IP model

```
min \sum_{i=1}^{r} x_i subject to
x_i \in \{0, 1\} for i = 1, ..., r,
further constraints
```

CHIPP Algorithms

Integer Programming Algorithm

IP Algorithm for CHIPP

- Solve HIPP using the IP model.
 - Let i_1, \ldots, i_p be the indices of these haplotypes.
- Add the following inequality to the IP model:

$$\sum_{s=1}^{p} x_{i_s} \leq p-1$$

CHIPP Algorithms

Integer Programming Algorithm

- Case 1: The new IP has an objective value larger than p.
- \hookrightarrow No new optimal solution exists.
- So Case 2: The new IP has an objective value equal to *p*.
- \hookrightarrow Another optimal solution has been found.
- Repeat this process, until all optimal solutions have been found.

CHIPP Algorithms

Branch-and-Bound Algorithm

Branch-and-Bound (BnB) Algorithm for HIPP

• [Wang, Xu; 2003]

- The algorithm starts with a heuristic solution leading to the initial upper bound for the BnB search.
- The search implicitly considers all possible explaining haplotype pairs for each genotype.
- The best solution found is the optimal solution to be returned.
- If during the search the node cost is equal to or exceeds the upper bound, move on to the next branch.

CHIPP Algorithms

Branch-and-Bound Algorithm

BnB Algorithm for CHIPP

- Pruning is applied only when the node cost strictly exceeds the upper bound.
- This allows to explore a branch that may lead to another optimal solution.

Optimization Techniques

Concept

Concept

- Idea: Transform instance to a smaller and easier equivalent one.
- Advantage: New instance easier to solve.
- Disadvantage: Transformation costs extra time.
- Expectation: For difficult instances extra time is much smaller than saved time.
- → Fixed Parameter Tractability [Niedermeier; 2006]

Optimization Techniques

Backbone Technique

Backbones

- Backbone haplotypes: Haplotypes appearing in each optimal HIPP solution.
- Backbone genotypes: Genotypes that can be explained by two backbone haplotypes.
- Idea: Backbone genotypes can be omitted for HIPP/CHIPP.
 Reason: They can be explained by haplotypes of any optimal solution.
- \hookrightarrow Compute backbone haplotypes.
- → With backbone haplotypes compute backbone genotypes (easy).

Optimization Techniques

Backbone Technique

Computation of trivial backbone haplotypes

- A genotype with no 2 leads to one backbone haplotype. Example: $g = (1, 0, 1) \Rightarrow h = (1, 0, 1)$.
- A genotype with one 2 leads to two backbone haplotypes. Example: $g = (1, 0, 2) \Rightarrow h = (1, 0, 0)$ and h' = (1, 0, 1).
- This are trivial backbone haplotypes.

Optimization Techniques

Backbone Technique

Computation of non-trivial backbone haplotypes

- Idea: When a backbone haplotype is omitted, no optimal solution to HIPP can be found any more.
- This haplotype must be contained in the optimal solution.

Optimization Techniques

Backbone Technique

Example

- Input: $g_1 = (1, 0, 2, 2), g_2 = (2, 2, 1, 0), g_3 = (2, 2, 1, 2).$
- Solution 1: $h_1 = (1, 0, 1, 0), h_2 = (1, 0, 0, 1), h_3 = (0, 1, 1, 0), h_4 = (0, 1, 1, 1),$ because
 - **1** g_1 can be explained by h_1, h_2 .
 - 2 g_2 can be explained by h_1, h_3 .
 - 3 g_3 can be explained by h_1, h_4 .
 - No set of haplotypes exists with this condition and cardinality 1,2 or 3.
- Question: Is $h_1 = (1, 0, 1, 0)$ a backbone haplotype?
- Answer: Yes, because

a solution without $h_1 = (1, 0, 1, 0)$ contains $h_5 = (1, 0, 0, 0), h_6 = (1, 0, 1, 1),$ $h_7 = (0, 0, 1, 0), h_8 = (1, 1, 1, 0)$ and another 5-th haplotype.

Optimization Techniques

Equal Column Technique

Example

- Input 1: g₁ = (2).
 Solution: h₁ = (0), h₂ = (1).
- Input 2: $g_2 = (2, 2)$. Solution 1: $h_3 = (0, 0), h_4 = (1, 1)$. Solution 2: $h_5 = (0, 1), h_6 = (1, 0)$.

Optimization Techniques

Equal Column Technique

Equal Column Technique

- Copy column 1 of the solution of input 1 to column 2.
- \hookrightarrow Solution 1 of input 2.
- \hookrightarrow Equal column technique for HIPP [Wang, Xu; 2003].
 - But: original equal column technique does not work directly for CHIPP because

solution 2 of input 2 is missed by this method.

- \hookrightarrow Idea: For an equal column enumerate all possible combinations of 0 and 1 with the restriction that
 - each resulting haplotype explains at least one genotype.

Optimization Techniques

Decomposability Technique

Decomposability Algorithm

 Two genotypes g and g' are non-overlapping, if i ∈ {1,2,...,m} exists with:

•
$$g_i = 0, g'_i = 1$$
 or $g_i = 1, g'_i = 0.$

- Observation: Two non-overlapping genotypes do not share any explaining haplotype.
- → Idea: Compose CHIPP solutions of sub-classes whose genotypes do not overlap.

Optimization Techniques

Decomposability Technique

Example

Input 1: g₁ = (0, 2, 2).
Solution 1: h₁ = (0, 0, 0), h₂ = (0, 1, 1).
Solution 2: h₃ = (0, 0, 1), h₄ = (0, 1, 0).

• Input 2:
$$g_2 = (1, 2, 2)$$
.
Solution 1: $h_5 = (1, 0, 0), h_6 = (1, 1, 1)$
Solution 2: $h_7 = (1, 0, 1), h_8 = (1, 1, 0)$

2).

Experimental Results

Easy Instances

- Optimized slightly worse than baseline algorithms.
- → Typical example: IP-Bas.: 1 sec. IP-Opt.: 1.68 sec.

Difficult Instances

- Optimized significantly superior to baseline algorithms.
- \hookrightarrow Typical example: BnB-Bas.: > 6 h. BnB-Opt.: 275.69 sec.

Optimized Versions

IP better performance than BnB.

Optimization Techniques

• Strongly depends on structure of instances, e.g., backbone technique effective for instances with many backbones.

Experimental Results

Thanks for your attention!