
The number of pessimistic guesses in Generalized Black-peg Mastermind

Gerold Jägera, Marcin Peczarskib

aInstitute for Applied Stochastics and Operations Research, Technical University of Clausthal, D-38678 Clausthal, Germany
bInstitute of Informatics, University of Warsaw, ul. Banacha 2, PL-02-097 Warszawa, Poland

Abstract

Mastermind is a famous two-player game, where the codemaker has to choose a secret code and the codebreaker has
to guess it in as few questions as possible using information he receives from the codemaker after each guess. In
Generalized Black-peg Mastermind for given arbitrary numbers p, c, the secret code consists of p pegs each having
one of c colors, and the received information consists only of a number of black pegs, where this number equals the
number of pegs matching in the corresponding question and the secret code. Let b(p, c) be the pessimistic number
of questions for Generalized Black-peg Mastermind. By a computer program we compute several values b(p, c). By
introducing some auxiliary games and combining this program with theoretical methods, for arbitrary c we obtain
exact formulas for b(2, c), b(3, c) and b(4, c) and give upper and lower bounds for b(5, c) and a lower bound for b(6, c).
Furthermore, for arbitrary p, we present upper bounds for b(p, 2), b(p, 3) and b(p, 4). Finally, we give bounds for the
general case b(p, c). In particular, we improve an upper bound recently proved by Goodrich.

Keywords: Combinatorial problems, Algorithms, Mastermind, Logic game, Computer aided proof

1. Introduction

Mastermind is a two-player game invented by Morde-
cai Meirowitz in 1970. The first player, called code-
maker, chooses a secret code. The secret consists of
4 pegs, each of which in one of 6 colors. The second
player, called codebreaker, asks questions to guess the
secret. A question also consists of 4 pegs in 6 colors.
Each question is answered by the codemaker with black
and white pegs. A black peg means that one peg of the
guess is correct in position and color, but does not in-
form which one. A white peg means that one peg of the
guess is correct only in color, but does not inform which
one as well. The game ends when the codebreaker re-
ceives the answer containing 4 black pegs. The goal of
the codebreaker is to discover the secret in as few ques-
tions as possible.

Mastermind is widely considered in the algorithmic
literature. Miscellaneous approaches have been pro-
posed to solve the game. Whereas most work uses clas-
sic combinatorial methods [2, 4, 5, 6, 8, 13, 14, 18], in
[1, 12, 16] evolutionary or genetic algorithms are pro-
posed. The NP-completeness of the Mastermind game

Email addresses: gerold.jaeger@tu-clausthal.de (Gerold
Jäger), marpe@mimuw.edu.pl (Marcin Peczarski)

was proved in [17]. Static Mastermind [6, 7, 10] and AB
Game [3] are further variants of this game.

In [11] we considered Generalized Mastermind, fur-
ther denoted by G(p, c), where an arbitrary number p
of pegs and an arbitrary number c of colors are given.
Goodrich considered in [9] a version of Generalized
Mastermind, where whites pegs are ignored in answers,
i.e., only black pegs are allowed. We call this game
Generalized Black-peg Mastermind and denote it by
GB(p, c). Goodrich [9] proved that the game GB(p, c) is
also NP-complete and gave the following upper bound
for the pessimistic number of questions

pdlog2 ce + d(2 − 1/c)pe + c. (1)

In this paper we apply the approach from [11] to solve
the game GB(p, c). The paper is organized as follows.
Section 2 introduces two new auxiliary games used ex-
tensively throughout the paper. Section 3 contains aux-
iliary results needed to prove the results in the subse-
quent sections. Section 4 presents values obtained by
computer search. Section 5 presents how to obtain tight
lower and upper bounds for a fixed number of pegs. In
particular, we completely solve the cases of 2, 3 and 4
pegs, give tight lower bounds for 5 and 6 pegs, and a
tight upper bound for 5 pegs. Section 6 presents upper
bounds for a fixed number of colors c ≤ 4. In Section 8

Preprint submitted to Elsevier March 21, 2011

we improve the upper bound (1) of Goodrich [9] and we
prove lower bounds for an arbitrary number of pegs and
colors. The paper closes with some open problems in
Section 9.

2. Preliminaries

Let f (p, c) be the pessimistic number of questions in
the game G(p, c), and b(p, c) the pessimistic number of
questions in the game GB(p, c). To prove lower and up-
per bounds, we introduce two new auxiliary games.

Let b∗(p, c) be the pessimistic number of questions
in a game GB∗(p, c), in which (besides the real colors)
we can use one additional filler color in questions, i.e.,
totally c + 1 colors, but this filler color does not appear
in the secret.

Let b∗(p, c) be the pessimistic number of questions in
a game GB∗(p, c), when we begin with c − 1 questions
of the form xxx . . . x, each with different color x.

As each strategy for GB(p, c) is also a strategy for
GB∗(p, c), and as each strategy for GB∗(p, c) is also a
strategy for GB(p, c), the following lemma is obvious.

Lemma 1. For p ≥ 1 and c ≥ 1 it holds

b∗(p, c) ≤ b(p, c) ≤ b∗(p, c).

Note that Lemma 1 justifies the introduction of the
games GB∗(p, c) and GB∗(p, c).

3. Auxiliary results

At the beginning, we prove some results for GB(p, c),
GB∗(p, c) and GB∗(p, c), which we will extensively use
in the rest of the paper.

It can be shown that all real colors are equivalent in
the first question. For our purpose, it suffices to prove
the following weaker result that we can freely choose
only one real color in the first question.

Lemma 2. Let p ≥ 1, c ≥ 1, and x1, x2, . . . , xc be
the real colors of the games GB(p, c) and GB∗(p, c).
Furthermore denote with y the filler color of the game
GB∗(p, c), and let an arbitrary x ∈ {x1, x2, . . . , xc} be
given. Then it holds:

(a) If there is a strategy for GB(p, c) using at most q
questions, then there is also a strategy using at most
q questions and starting with the question xxx . . . x.

(b) If there is a strategy for GB∗(p, c) using at most
q questions, then there is also a strategy using
at most q questions and starting with a question
z1z2z3 . . . zp, where zi ∈ {x, y} for i = 1, 2, . . . , p.

Proof. Let an arbitrary strategy S for the game GB(p, c)
or GB∗(p, c) be given using at most q questions. Let
the first question of S be z1z2 . . . zp, and let T be the
set of all possible questions in GB(p, c) or GB∗(p, c),
respectively. Consider the function π : T → T defined
as follows. For 1 ≤ i ≤ p, if zi , x and zi , y, π
exchanges at peg i the colors zi and x.

Observe that if X is a secret, i.e., contains only colors
x1, x2, . . . , xc, then π(X) is also a secret. Now let π(S)
denote the strategy, where we apply π to all questions
in S .

Let X be a secret. If S asks a question Q and receives
B blacks, then π(S) asking π(Q) about the secret π(X)
receives also B blacks. Hence, if S chooses the next
question Q′, then π(S) chooses π(Q′). Thus for both,
GB(p, c) or GB∗(p, c), it holds that if S solves a secret
X in q questions, then π(S) solves the secret π(X) in q
questions. As for every secret Y a secret X exists with
Y = π(X), the strategy π(S) solves the game GB(p, c) or
GB∗(p, c) using pessimistically also q questions. �

Lemma 3. For p ≥ 1 and c ≥ 1 it holds

b∗(p, c) + 1 ≤ b∗(p, c + 1).

Proof. Consider an arbitrary strategy S for GB∗(p, c+1)
with q = b∗(p, c + 1) questions. Let x1, x2, . . . , xc+1 be
the colors used in the secret, and let xc+2 be the filler
color used only in questions. By Lemma 2(b), w.l.o.g.
we can assume that the first question of S has only pegs
of colors xc+1 and xc+2.

Obviously, the strategy S works also for p pegs and
c colors, where the colors used in the secret are x1, x2,
. . . , xc. In this case the first answer is always 0 blacks.
Hence, we do not need to ask it and we can start the
game from the second question. Therefore, to complete
the game we need at most q − 1 questions. Moreover,
as the colors xc+1 and xc+2 are not used in the secret, we
can replace xc+2 by xc+1 in all questions. We obtain a
strategy for GB∗(p, c) using at most q− 1 questions. We
conclude that b∗(p, c) ≤ b∗(p, c + 1) − 1. �

Lemma 4. For p ≥ 1 and c1 ≥ c0 ≥ 1 it holds

b(p, c1) ≥ b∗(p, c0) + (c1 − c0).

Proof. This follows from Lemma 1 and Lemma 3 by
induction on c1 − c0. �

Lemma 5. For c1, c0 > p ≥ 1 it holds

b∗(p, c1) = b∗(p, c0) + (c1 − c0).

2

Proof. Observe that the state, when the first c0−1 ques-
tions have been asked in the game GB∗(p, c0), and the
state, when the first c1 − 1 questions have been asked
in the game GB∗(p, c1), are the same, because in both
cases we know the number of each color in the secret.
At most p different colors are possible and we can use a
filler color in the rest of the game. It follows

b∗(p, c1) − (c1 − 1) = b∗(p, c0) − (c0 − 1)

which is equivalent to the assertion of Lemma 5. �

Lemma 6. For c1 ≥ c0 ≥ p ≥ 1 it holds

b(p, c1) ≤ b∗(p, c0) + (c1 − c0).

Proof. The result holds for c1 = c0 and c1 > c0 > p by
Lemma 1 and Lemma 5. For c1 > c0 = p we claim that

b∗(p, c1) − (c1 − 1) ≤ b∗(p, c0) − (c0 − 1).

The proof is the same as for Lemma 5 with the only
difference as follows. Whereas on the left side after the
first c1 − 1 questions we have a filler color unused in
the secret which we can use, on the right side we have
not such a filler color. Finally, by Lemma 1, it holds
b(p, c1) ≤ b∗(p, c1). �

We close this section with an interesting result. An
analogue theorem for f (p, c) is still an open question.

Theorem 7. For p ≥ 1 and c ≥ 1 it holds

b(p, c) ≤ b(p + 1, c).

Proof. Consider a strategy for p + 1 pegs and c col-
ors. We want to use it for p pegs. Let the secret
be x1x2x3 . . . xp. For our p + 1 pegs strategy we con-
sider the secret x1x2x3 . . . xpz, where z is a known fixed
color. Now if the strategy requires to ask the question
y1y2y3 . . . ypyp+1, we ask the question y1y2y3 . . . yp. As-
sume we have received the answer B blacks. If yp+1 = z,
we change the answer to B + 1 blacks. If yp+1 , z, we
proceed with B blacks. Then the next question for the p
pegs strategy comes from the (p + 1)-pegs strategy. �

4. Computed values

We have adapted the program developed in [11] for
f (p, c) to compute values b(p, c), b∗(p, c) and b∗(p, c).
Again this program is based on the nauty package for
generating families of graphs without isomorphisms
[15, 19]. By Lemma 2 and by permuting the peg po-
sitions up to isomorphism, we need to consider only
one first question in GB(p, c) and only p + 1 different

Table 1: Computed values b(p, c) for p ≤ 8 and c ≤ 10

c
1 2 3 4 5 6 7 8 9 10

p

1 1 2 3 4 5 6 7 8 9 10
2 1 3 4 5 6 7 8 9 10 11
3 1 4 5 6 7 8 9 10 11 12
4 1 5 5 6 8 9 10 11 12 13
5 1 5 6 7 ≤ 9
6 1 6 6 8 ≤ 10
7 1 6 7
8 1 7 7

Table 2: Computed values b∗(p, c) for p ≤ 8 and c ≤ 10

c
1 2 3 4 5 6 7 8 9 10

p

1 1 2 3 4 5 6 7 8 9 10
2 1 3 4 5 6 7 8 9 10 11
3 1 3 5 6 7 8 9 10 11 12
4 1 4 5 6 8 9 10 11 12 13
5 1 4 6 7
6 1 5 6
7 1 5 7
8 1 5 7

first questions in GB∗(p, c). The computation of all pre-
sented values needed a few hours on a Core 2 Duo 2.13
GHz or a Core i5 2.4 GHz processor. The source code
of our program is publicly available [20].

The values b(p, c), b∗(p, c), b∗(p, c) are presented in
Tables 1, 2, and 3, respectively. Note that the values pre-
ceded by “≤” are only upper bounds. They are found by
restricting the program to search for the Knuth–Greedy
strategy [13] only, i.e., we always choose a question
minimizing the maximum number of possible secrets.

Note that the value b∗(4, 5) has been received as fol-
lows. The computer program returned that b∗(4, 5) > 7.
From Lemma 1 it follows b∗(4, 5) ≤ b(4, 5) = 8, which
means that b∗(4, 5) = 8.

Similarly, the values b∗(8, 3) and b(8, 3) have been
received as follows. By Theorem 7 and by Table 1, we
conclude b(8, 3) ≥ b(7, 3) = 7. By Lemma 1 and by
Table 3 it follows b∗(8, 3) ≤ b(8, 3) ≤ b∗(8, 3) = 7.
As the computer program returned that b∗(8, 3) > 6, we
received b∗(8, 3) = b(8, 3) = 7.

The additional values found by theory are in bold
face. The values in Table 1 have been obtained using

3

Table 3: Computed values b∗(p, c) for p ≤ 8 and c ≤ 10

c
1 2 3 4 5 6 7 8 9 10

p

1 1 2 3 4 5 6 7 8 9 10
2 1 3 4 5 6 7 8 9 10 11
3 1 4 5 6 7 8 9 10 11 12
4 1 5 5 7 8 9 10 11 12 13
5 1 5 6 8 9 10 11 12 13 14
6 1 6 7 8 10
7 1 6 7 9
8 1 7 7

Theorem 8(h) (see Section 5). The values in Table 2
have been obtained using Lemma 1, Lemma 3 and Ta-
ble 1, and the values in Table 3 using Lemma 5.

5. Fixed number of pegs

In this section we present results for a fixed number
of pegs and an arbitrary number of colors.

Theorem 8. It holds:

(a) b(1, c) ≥ c for c ≥ 1,

(b) b(2, c) ≥ c + 1 for c ≥ 2,

(c) b(3, c) ≥ c + 2 for c ≥ 2,

(d) b(4, c) ≥ c + 3 for c ≥ 5,

(e) b(5, c) ≥ c + 3 for c ≥ 2,

(f) b(6, c) ≥ c + 3 for c ≥ 2,

(g) b(p, c) ≤ c + p − 1 for 1 ≤ p ≤ 5 and c ≥ 1,

(h) b(p, c) = c + p − 1 for 1 ≤ p ≤ 4 and c > p.

Proof.

Case (a)
We set c0 = 1 and c1 = c in Lemma 4 and we use the

value b∗(1, 1) = 1 from Table 2.

Case (b)
We set c0 = 2 and c1 = c in Lemma 4 and we use the

value b∗(2, 2) = 3 from Table 2.

Case (c)
For c ≥ 3 we set c0 = 3 and c1 = c in Lemma 4 and

we use the value b∗(3, 3) = 5 from Table 2. For c = 2
we use the value b(3, 2) = 4 from Table 1.

Case (d)
We set c0 = 5 and c1 = c in Lemma 4 and we use the

value b∗(4, 5) = 8 from Table 2.

Case (e)
For c ≥ 3 we set c0 = 3 and c1 = c in Lemma 4 and

we use the value b∗(5, 3) = 6 from Table 2. For c = 2
we use the value b(5, 2) = 5 from Table 1.

Case (f)
We set c0 = 2 and c1 = c in Lemma 4 and we use the

value b∗(6, 2) = 5 from Table 2.

Case (g)
If c ≥ p, this follows from Lemma 6 for c0 = p and

c1 = c, where we use that it holds by Table 3:

b∗(p, p) = 2p − 1

for 1 ≤ p ≤ 5. For c < p all needed values appear in
Table 1.

Case (h)
This claim follows directly from (a), (b), (c), (d) and

(g). �

Note that the method presented in this section would
also be applicable to obtain tight bounds or even exact
formulas for b(p, c) with p > 4, if we would be able to
compute values b∗(p, c) for c ≤ p + 1 and b∗(p, p).

6. One, two or three colors

In this section we present results for at most three
colors and an arbitrary number of pegs. We postpone
the case of four colors to Section 7. If we compare
the results for the game G(p, c) in [11] with the results
for the game GB(p, c) in this section, we observe that
white pegs in answers are important, in particular when
the number of colors increases. The following theorem
states that white pegs are not very helpful for two colors.

Theorem 9. For p ≥ 1 it holds

f (p, 2) ≤ b(p, 2) ≤ f (p, 2) + 1.

Proof. The left inequality follows from the observa-
tion that each strategy for GB(p, c) is also a strategy for
G(p, c).

For proving the right inequality let an optimal strat-
egy for G(p, 2) be given with f (p, 2) questions in the
worst case. We change this strategy to a strategy for
GB(p, 2) with f (p, 2) + 1 questions in the worst case.
The only difference is that we start with the question
xxx . . . xx, and then we ask the questions of the opti-
mal strategy for G(p, 2). To use the strategy for G(p, 2)

4

we need to know the number W of white pegs in an-
swers. But after the first question the number W is
uniquely determined by the number B of black pegs as
W = p−B−|k−k′|, where k, k′ is the number of x in the
secret and in the considered question, respectively (see
[11, eq. (8)]). Thus this strategy solves GB(p, 2) in at
most f (p, 2) + 1 questions. �

Theorem 10. For p ≥ 1 and 1 ≤ c ≤ 3 it holds

b(p, c) ≤ c + p − 1.

Proof. We consider each number of colors separately.

Case c = 1
This case is clear, as b(p, 1) = 1 ≤ 1 + p − 1.

Case c = 2
Let the colors be x, y. First, we ask xxx . . . xx. We

receive k0 blacks. Next we ask the p − 1 questions:
yxx . . . xx, xyx . . . xx, xxyx . . . x, . . . , xx . . . xyx. We
receive k1, k2, . . . , kp−1 blacks, respectively. For each
1 ≤ i ≤ p − 1 we consider the following two cases.
If k0 > ki, then peg i has color x. If k0 < ki, then peg i
has color y. The secret contains k0 pegs of color x and
p − k0 pegs of color y. Hence, the color at peg p can be
deduced. Finally, we ask the last question to receive p
blacks. Hence, we have the upper bound b(p, 2) ≤ p+1.

Case c = 3
Let the colors be x, y, z. First, we ask the ques-

tion xxx . . . xx. We receive k0 blacks. Next we ask
the p questions: yxx . . . xx, xyx . . . xx, xxyx . . . x, . . . ,
xx . . . xyx, xxx . . . xy. We receive k1, k2, . . . , kp blacks,
respectively. For each 1 ≤ i ≤ p we consider the fol-
lowing three cases. If k0 > ki, then peg i has color x.
If k0 < ki, then peg i has color y. If k0 = ki, then peg i
has color z. Finally, we ask the last question to receive p
blacks. Hence, we have the upper bound b(p, 3) ≤ p+2.

�

7. Four colors

We devote a separate section to the case of four
colors, because it concerns the original motivation of
Goodrich’s work, see [9, Sect. 1.2, the first paragraph].
The problem of finding genomic data, stated there, is in
fact the game GB(p, 4).

Theorem 11. For p ≥ 1 it holds

b(p, 4) ≤ p + 3.

Proof. Let p = 4s + t, where s ∈ N0 and t ∈ {1, 2, 3, 4}.
Let the colors be w, x, y, z. We begin with three ques-
tions: www . . .w, xxx . . . x, yyy . . . y. Then we know
how many times the colors w, x and y appear in the
secret. The number of pegs of the color z can be de-
duced. Next we apply Procedure I for the first 4s pegs
(see below), requiring 4s questions. After that we know
the colors of the first 4s pegs and how many times each
color appears in the last t pegs. As explained in the Pro-
cedures II, III, IV, V (see below), we can guess these
last pegs in at most t − 1 questions. Finally, we ask the
last question. Totally, we have at most

3 + 4s + (t − 1) + 1 = p + 3

questions.

Procedure I: for the first 4s pegs
We define a new auxiliary game as follows. Consider

the game GB(p, c) and p0 < p. Assume that in GB(p, c)
we begin with c − 1 questions of the form xixixi . . . xi,
each with different color xi for i = 1, 2, . . . , c − 1. Let
the answers be k1, k2, . . . , kc−1. After that we know that
color xi appears ki times in the secret for i = 1, 2, . . . ,
c − 1. Note that

kc := p −
c−1∑
i=1

ki

is the number, how often the color xc appears in the se-
cret. Then GB′(p0, c) is defined as the game of finding
the first p0 pegs of the secret of GB(p, c), where only
questions are used with a fixed color xi in the last p− p0
pegs for i = 1, 2, . . . , c. If such a question receives the
answer l blacks, the difference l − ki gives information
about the first p0 pegs. In the game GB′(p0, c) we con-
sider as answers only the differences l − ki, and not the
absolute numbers of blacks l. By b′(p0, c) we denote the
pessimistic number of questions in this game excluding
the final question, which gives the correct answer for the
first p0 pegs.

The idea behind this game is that we can repeat this
strategy bp/p0c times, where each repetition computes
the next p0 pegs by setting in all questions as previous
pegs the correct ones.

We adapted the computer program to search for
strategies in games GB′(p0, c). The computation re-
turned that b′(4, 4) = 4, which means that each 4 pegs
can be guessed in 4 questions. Observe that b′(4, 4) <
b(4, 4) − 1, which is reasonable, as in the game GB′ we
have 2p+1 possible answers to each question and in GB
only p + 1 ones. The first two questions of this strategy

5

are:

wwww xxx . . . x, (2)
wwxx yyy . . . y. (3)

If the answer to (2) is 4 or −4, the second question is not
needed, and we know that the first four pegs are wwww
or xxxx, respectively. In the other case we ask (3). If the
combination of answers to (2) and (3) is (0, 4), (0,−4),
(2, 2), (2,−2), (−2, 2), (−2,−2) then the first four pegs
are wwxx, yyyy, wwzz, yyww, zzxx, xxyy, respectively.
In the other cases we need to ask the third or even the
fourth question. Unfortunately, almost each combina-
tion of answers needs an individual treatment. Note
that the whole strategy, being too complicated to be pre-
sented here, has been made publicly available [20].
Procedure II: for the last 1 peg, if t = 1

We do not need to ask any question. The color of the
last peg can be deduced.
Procedure III: for the last 2 pegs, if t = 2

If both pegs have the same color, we know this color,
and we are done. If the pegs have different colors, say
w and x, we ask the question

v1 . . . vp−2︸ ︷︷ ︸
known pegs

wx. (4)

This question distinguishes two possible combinations,
as shown in Table 4.

Table 4: Strategy for t = 2

The last two pegs The answer to (4)
wx p
xw p − 2

Procedure IV: for the last 3 pegs, if t = 3
If all three pegs have the same color, we are done. In

the other case we ask the two questions:

v1 . . . vp−3︸ ︷︷ ︸
known pegs

wxy, (5)

v1 . . . vp−3︸ ︷︷ ︸
known pegs

wwx. (6)

If there are only two colors, say w appears two times
and x appears one time, there are three possible combi-
nations of the last three pegs. As shown in Table 5, all
combinations are distinguished after (5).

If we have three colors, say w, x, y, there are six pos-
sibilities. As shown in Table 6, all combinations are

Table 5: First strategy for t = 3

The last three pegs The answer to (5)
wwx p − 2
wxw p − 1
xww p − 3

Table 6: Second strategy for t = 3

The last The answer The answer
three pegs to (5) to (6)

wxy p —
xyw p − 3 p − 3
ywx p − 3 p − 1
yxw p − 2 p − 3
xwy p − 2 p − 2
wyx p − 2 p − 1

distinguished after the questions (5) and (6). Note that
“—” indicates that the second question is not required.
Procedure V: for the last 4 pegs, if t = 4

If all four pegs have the same color, we are done. In
the other case we ask the two questions:

v1 . . . vp−4︸ ︷︷ ︸
known pegs

wxyz, (7)

v1 . . . vp−4︸ ︷︷ ︸
known pegs

wwxy. (8)

If there are only two colors with cardinalities 3 and 1,
say w appears three times and x appears one time, there
are four possible combinations of the last four pegs. As
shown in Table 7, all combinations are distinguished af-
ter the questions (7) and (8).

If there are only two colors with cardinalities 2 and
2, say w and x appear two times, there are six com-
binations. As shown in Table 8, all combinations are
distinguished after the questions (7) and (8).

Table 7: First strategy for t = 4

The last The answer The answer
four pegs to (7) to (8)

wwwx p − 3 p − 2
wwxw p − 3 p − 1
wxww p − 2 —
xwww p − 4 —

6

Table 8: Second strategy for t = 4

The last The answer The answer
four pegs to (7) to (8)

wwxx p − 3 p − 1
xxww p − 3 p − 4
wxwx p − 2 p − 3
wxxw p − 2 p − 2
xwwx p − 4 p − 3
xwxw p − 4 p − 2

If there are only three colors, say w appears two times
and x and y appear one time, and after (7) and (8) the
secret is not known, we ask the third question

v1 . . . vp−4︸ ︷︷ ︸
known pegs

xxzz. (9)

The answers for all possible 12 combinations are shown
in Table 9.

Table 9: Third strategy for t = 4

The last The answer The answer The answer
four pegs to (7) to (8) to (9)

wwxy p − 3 p —
wwyx p − 2 p − 2 p − 4
wxwy p − 2 p − 2 p − 3
wywx p − 3 p − 3 p − 4
wxyw p − 1 — —
wyxw p − 3 p − 2 —
xwyw p − 3 p − 3 p − 3
ywxw p − 4 p − 2 p − 4
xwwy p − 4 p − 2 p − 3
ywwx p − 4 p − 3 —
xyww p − 4 p − 4 —
yxww p − 3 p − 4 —

If all pegs have different colors, there are 24 possible
combinations. The answers to the questions (7) and (8)
for all combinations are shown in Table 10. If these an-
swers do not distinguish all possible secrets, we ask a
third question, which is given in the last column of Ta-
ble 10. It can easily be checked that the corresponding
answers distinguish all combinations. �

Note that if we would be able to compute values
b′(c, c) with c > 4 of the auxiliary game, we could gen-
eralize Theorem 10 and Theorem 11 to larger c.

Table 10: Fourth strategy for t = 4

The last The answer The answer The third
four pegs to (7) to (8) question

wxyz p — —
wxzy p − 2 p − 2 wxzy
wyxz p − 2 p − 2 wxzy
wyzx p − 3 p − 3 wyzx
wzxy p − 3 p − 1 —
wzyx p − 2 p − 3 wzyx
xwyz p − 2 p − 3 wzyx
xwzy p − 4 p − 2 —
xywz p − 3 p − 4 xywz
xyzw p − 4 p − 4 xyzw
xzwy p − 4 p − 3 xzww
xzyw p − 3 p − 4 xywz
ywxz p − 3 p − 2 —
ywzx p − 4 p − 3 xzww
yxwz p − 2 p − 4 yxwz
yxzw p − 3 p − 4 xywz
yzwx p − 4 p − 4 xyzw
yzxw p − 4 p − 3 xzww
zwxy p − 4 p − 1 —
zwyx p − 3 p − 3 wyzx
zxwy p − 3 p − 3 wyzx
zxyw p − 2 p − 4 yxwz
zywx p − 4 p − 4 xyzw
zyxw p − 4 p − 3 xzww

8. The general case

First, we improve the upper bound (1) shown by
Goodrich [9]. In our proof we also use the following
procedure of Goodrich’s work.

Let 1 ≤ l ≤ m < r ≤ p. We assume that we know how
many times each color appears in the range [l, . . . , r] and
outside of the range. After performing the procedure we
know how many times each color appears in the range
[l, . . . ,m] and thus also how many times in the the range
[m + 1, . . . , r]. Let x0, x1, . . . , xk be the colors appearing
in the range [l . . . r], where k ≤ r − l and k < c. The
procedure asks k questions, where in the range [l . . . r]

xi . . . xi︸ ︷︷ ︸
m−l+1

x0 . . . x0︸ ︷︷ ︸
r−m

for i = 1, 2, . . . , k is used, and at the other positions an
arbitrary fixed color is used.

7

Theorem 12. For c ≥ 1 and p ≥ 1 it holds

b(p, c) ≤

c + pdlog2 pe − p + 1 for c > p,
c + pdlog2 ce for c ≤ p.

Proof. We prove each case separately.

Case c > p
We prove that

b(p, c) ≤ (c − 1) + (pdlog2 pe − p + 1) + 1.

We ask c − 1 questions of the form xxx . . . x, each with
different color x. This is the first term in the above in-
equality. As the number of the last color can be de-
duced, we know how many times each color appears in
the secret. Then we apply the binary search [11, p. 640,
last two lines, p. 641, the first paragraph]. This is the
second term in the inequality. Now we can ask the final
question – the third term.

Case c ≤ p
Let p = cs + t, where s, t ∈ N0 with 1 ≤ t ≤ c. Let

L := dlog2 ce. The game consists of four phases.
The first phase

We ask c − 1 questions, each using a different color
and containing p pegs of that color. After that we know
how many times each color appears in the secret.
The second phase

Using the Goodrich procedure, we can guess which
colors appear at the first c positions by using c− 1 ques-
tions. Similarly we can find the colors at the next c po-
sitions, etc. The colors at the last t positions can be
deduced. The second phase needs

(c − 1)s = p − s − t

questions.
The third phase

We consider each c pegs separately. At the end of this
phase we consider the last t pegs. We use the Goodrich
procedure to partition each c (or the last t) pegs into two
groups, then into four groups, into eight groups, etc. Fi-
nally, we obtain c (or t) groups, each containing one peg.
Formally, a step is the partition of c (or t) pegs, where
each group containing at least two pegs is partitioned
into two smaller groups. We need at most L such steps.
The following example shows this more clearly.

Let c = 9. We have L = dlog2 9e = 4 steps. After the
1st step we have a partition into two groups containing
4 and 5 pegs, respectively. We denote this by 4|5. This
requires 8 = c − 1 questions. After the 2nd step we
have a partition 2|2|2|3. This requires (4− 1) + (5− 1) =

c−2 questions. After the 3rd step we have 1|1|1|1|1|1|1|2.

This requires (2− 1) + (2− 1) + (2− 1) + (3− 1) = c− 4
questions. After the 4th step we have 1|1|1|1|1|1|1|1|1.
This requires 2 − 1 ≤ c − 1 questions.

Each step requires at most c questions minus the
number of calls to the Goodrich procedure, which was
called exactly c − 1 times. Hence, we have totally
cL − c + 1 questions. We repeat the above for each sub-
sequent c pegs and for the last t pegs. Hence, this phase
requires at most

s(cL − c + 1) + (tL − t + 1) = pL − p + s + 1

questions.
The fourth phase

We ask the final question.

Adding questions in all phases and taking into ac-
count that t ≥ 1 we conclude

b(p, c) ≤ (c − 1) + (p − s − t)
+ (pL − p + s + 1) + 1

= c + pL − t + 1
≤ c + pL

= c + pdlog2 ce.

�

Finally, we consider the lower bound.

Theorem 13. For p ≥ 2 and c ≥ 2 it holds

b(p, c) ≥ c +
p

log2 p
− 2.

Proof. By Lemma 4 we have

b(p, c) ≥ b∗(p, 2) + c − 2

It is sufficient to show that

b∗(p, c) ≥
p log2 c
log2 p

.

We use the information-theoretic bound (see [11, Sect.
2.2]). Let q = b∗(p, c). The number of possible secrets
is cp. There are p + 1 possible answers, where exactly
one answer ends the game. Let T (p, q) be the maximum
number of leaves in a rooted tree of height q, where each
node has at most p + 1 children exactly one of which is
a leaf. We have T (p, q) =

∑q−1
i=0 pi ≤ pq. It must hold

cp ≤ T (p, q). Hence, we have q ≥ p log2 c
log2 p . �

Note that Theorems 12 and 13 are rather useless to
get new results for Table 1. For small p and c, better
bounds can be obtained using already knows values and
the results for fixed number of pegs and colors.

8

9. Open problems

The obtained results leave many interesting open
questions. The comparison of Table 1 and Table 2 im-
mediately suggests the following conjecture.

Conjecture 14. For p ≥ 1 and c ≥ 3 it holds

b(p, c) = b∗(p, c).

From Table 2 we conjecture the following.

Conjecture 15. For p ≥ 1 it holds

b∗(p, p + 1) = 2p.

If this would be true, we could apply Lemma 4 for c0 =

p + 1 and c1 = c leading to b(p, c) ≥ c + p− 1 for c > p.
Similarly, from Table 3 we conjecture the following

(see also the proof of Theorem 8(g)).

Conjecture 16. For p ≥ 1 it holds

b∗(p, p) = 2p − 1.

If this would be true, we could apply Lemma 6 for c0 =

p and c1 = c leading to b(p, c) ≤ c + p − 1 for c ≥ p.
Finally, we think that the results obtained in this paper

lead strong credence to the following conjecture, which
would be a generalization of Theorem 8(h), Theorem 10
and Theorem 11.

Conjecture 17. (a) For c > p ≥ 1 it holds

b(p, c) = c + p − 1.

(b) For p ≥ c ≥ 1 it holds

b(p, c) ≤ c + p − 1.

References

[1] L. Bento, L. Pereira, A.C. Rosa, Mastermind by evolutionary
algorithms. in: Proc. of ACM Symp. Applied Computing, ACM
Press (1999) 307–311.

[2] Z. Chen, C. Cunha, S. Homer, Finding a hidden code by asking
questions, in: Proc. of Second Annual International Conference
on Computing and Combinatorics (COCOON), Lecture Notes
in Comput. Sci. 1090 (1996) 50–55.

[3] S.T. Chen, S.S. Lin, Optimal algorithms for 2× n AB games – a
graph-partition approach, J. Inform. Sci. and Engineering 20(1)
(2004) 105–126.

[4] S.T. Chen, S.S. Lin, L.T. Huang, Optimal algorithms for 2 ×
n Mastermind games – a graph partition approach, Comput. J.
47(5) (2004) 602–611.

[5] S.T. Chen, S.S. Lin, L.T. Huang, A two-phase optimization al-
gorithm for Mastermind, Comput. J. 50(4) (2007) 435–443.

[6] V. Chvátal, Mastermind, Combinatorica 3 (1983) 325–329.

[7] W. Goddard, Static Mastermind, J. Combin. Math. Combin.
Comput. 47 (2003) 225–236.

[8] W. Goddard, Mastermind revisited, J. Combin. Math. Combin.
Comput. 51 (2004) 215–220.

[9] M.T. Goodrich, On the algorithmic complexity of the Master-
mind game with black-peg results, Inform. Process. Lett. 109
(2009) 675–678.

[10] D.L. Greenwell, Mastermind, J. Recr. Math. 30(3) (1999–2000)
191–192.

[11] G. Jäger, M. Peczarski, The number of pessimistic guesses
in Generalized Mastermind, Inform. Process. Lett. 109 (2009)
635–641.

[12] T. Kalisker, D. Camens, Solving Mastermind using genetic algo-
rithms, in: Proc. of Genetic and Evolutionary Computation Con-
ference (GECCO), Lecture Notes in Comput. Sci. 2724 (2003)
1590–1591.

[13] D.E. Knuth, The computer as Mastermind, J. Recr. Math. 9(1)
(1976–77) 1–6.

[14] K. Koyama, T.W. Lai, An optimal Mastermind strategy, J. Recr.
Math. 25(4) (1993) 251–256.

[15] B.D. McKay, Isomorph-free exhaustive generation, J. Algo-
rithms 26 (1998) 306–324.

[16] J.J. Merelo-Guervós, P. Castillo, V.M. Rivas, Finding a needle in
a haystack using hints and evolutionary computation: the case of
evolutionary Mastermind, Appl. S. Comput. 6 (2006) 170–179.

[17] J. Stuckman, G.Q. Zhang, Mastermind is NP-Complete, INFO-
COMP J. Comput. Sci. 5 (2006) 25–28.

[18] P.F. Swaszek, The Mastermind novice, J. Recr. Math. 30(3)
(1999–2000) 193–198.

[19] Source code of [15]. Available: http://cs.anu.edu.au/

people/bdm/nauty.
[20] Source code and GB′(4, 4) strategy. Available: http://mimuw.

edu.pl/~marpe/research/src/gbpmm.zip.

9

